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UK 
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Abstract. Non-relativistic fermions whose motion is constrained by an infinite potential 
step (hard wall) are considered. Relative to the bulk, a net fermionic charge is induced 
at the wall due to the vanishing of the many-particle wavefunctions. The charge, linear 
charge density and the fluctuations from their mean values are calculated. 

1. Introduction 

In the recent past it has been shown that objects having fractional fermionic charge 
can arise in systems containing identical fermions (each of which carries unit fermionic 
charge) (Jackiw and Rebbi 1976). The charge (and localisation) of these objects is 
sufficiently well defined (Kivelson and Schrieffer 1982, Rajaraman and Bell 1982) that 
as far as macroscopic considerations (i.e. measurements) go we can ignore fluctuations 
in the charge. This is really the key to the interest in these objects. It is trivial to find 
systems that on average have fractional charge. The objects studied by the above 
authors have fractional charge with vanishingly small mean square deviations. 

Central to the attainment of the fractional charge has been the presence of topologi- 
cally non-trivial solitons. It was the objective of the investigation presented here to 
see if entities carrying fractional charge (again with vanishingly small mean square 
charge deviations) could be found in much more mundane situations than fermions 
moving in the field of a soliton. 

The system we have focused our attention on that could, quite possibly, exhibit 
such behaviour is rather simple. It is a system of non-relativistic fermions whose 
motion is restricted by a hard wall (infinite potential step). The principal idea behind 
this choice lies in the fact that in such systems there is generally a density ‘hole’ in 
the vicinity of the wall-resulting from the vanishing of all the one-particle wavefunc- 
tions at the wall. (A clear illustration of this point for a one-dimensional system can 
be seen on p 71 in the book by Peierls (1979).) 

The calculation we present illustrates that while it is not possiblet to find a localised 
fractional charge which is fluctuation free (in the sense described above) it is possible 
to find a linear charge density which does have this property. 

t In the very simple systems considered. 

0305-4470/86/091621+ 07$02.50 @ 1986 The Institute of Physics 1621 



1622 D Waxman 

2. Definition of the problem 

We consider a system of identical fermions moving in two dimensions. These are 
spinless, non-interacting and move non-relativistically. There are N fermions per unit 
area. 

The region of space we consider is 

L x 2 X 2 O  Ly 2 y 2 0. (2.1) 

We impose hard wall boundary conditions at x = 0 and x = L, and periodic boun- 
dary conditions along the y direction. Thus if the many-particle wavefunction is 
constructed out of the one-particle wavefunctions +(x, y)  these satisfy 

4(0,Y)=+(Lx,Y)=O (2.2) 

44x9 Y )  = 4(x, Y + Ly). (2.3) 
The quantities which we shall calculate with respect to the ground state of the 

( 1 )  the additional (average) fermionic charge/unit length associated with the wall 

( 2 )  the mean square deviation of the charge/unit length from its average value. 
In order to define the additional fermionic charge/unit length it is necessary to 

make a comparison with a reference system. The reference system we adopt is the one 
with the same number N of fermions/unit area but with periodic boundary conditions 
along both x and y directions. 

system are 

at x=O; 

3. Preliminaries? 

For the system with walls let anp denote the fermion annihilation operator for the 
one-particle states. These are 

(x ,  ~ l a & l v a c ) =  +np(x, Y )  (3.1) 

= ( I / L ~ ) ” ~  e’py+,(x) (3.2) 
with 

A ( x >  = s i n ( y )  n = 1,2 ,3 , .  . . . (3.3) 

Conditions (2.3) imply 

pLy = 2 ~ n  n = 0 ,  * l ,  * 2 . .  . . (3.4) 
The ground state of this system consists of all one-particle states up to the Fermi 

energy E~ being filled: 

with 

t We set f~ = 1 throughout. 
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In order to consider the additional charge/unit length it is necessary to define the 

Defining the field operator + ( r )  in terms of the eigenfunctions of (3.1) we have 
appropriate operator that represents this quantity. 

+ ( r )  = E  + n p ( r ) a n p  r = (x, y ) .  
n p  

We specify the Fermi energy by requiring 

(3.7) 

(3.8) 

the expectation value taken with respect to the ground state. Thus the operator 
representing the density deviation is 

d r )  = + + ( r ) + ( r )  - N (3.9) 

with the subtraction N corresponding to the average fermion density in the wall-free 
system?. 

The operator representing the change in fermionic charge/unit length associated 
with the wall at x=O is 

(3.10) 

In (3.10) we have introduced the measurement profile function f (x)  (Kivelson and 
Schrieffer 1982, Rajaraman and Bell 1982). This is a function which is unity for x = 0 
and goes smoothly to zero as x + Q). It represents the range of measurement made on 
the system. In general, having the linear charge operator U tempered by this function 
rather than a sharp cutoff avoids unphysical fluctuation effects. We take f (x)  to have 
the form 

f( x)  = e-x’d, (3.11) 

The length d is microscopically large but macroscopically small as is appropriate 

The two quantities we shall calculate are 
to a physical measurement. 

4. Calculation 

The linear charge density operator is 

CT =L loLi dy loLx dx f (x ) (++( r )+ ( r )  - N ) .  
LY 

(3.12) 

(3.13) 

‘t The Fermi energies of the wall-free and walled systems are slightly different but this does not affect any 
of the results in this work. 
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From equation (3.2) we have 

(4.2) exp[-iy(pl - P J I  
+ + ( r ) + ( r ) =  c +n, (x) +nz (x a p ,  an2 p2 * 

n1n2 LY 
PI P2 

For the ground state (equation (3.5)) we have 

( a : , p l a n 2 p * )  = e(+- & n l P , ) S n l n 2 ~ P l h .  (4.3) 

Hence we can write for the average linear charge density 

We evaluate the sum in the above equation by going to the large area limit in which 
it can be replaced by an integralt. Using equation (3.3) we have 

c 1 + n ( x ) 1 2 e ( & F -  E n p )  
n p  

- ( "mk2) 
-& 4 lm dp l0m dk sin2(kx)8 E F - -  

=$ Jb" d k ( p t -  kZ)lI2 sin2 kx. 

5r 25r L, -m 

In equation (4.6) we have introduced 

p F =  (2me,)'12 = ( 4 ~ ~ 1 ' ' ~  

(4.5) 

(4.6) 

(4.7) 

the last equality following from (3.8). 
Writing sin2 kx = $( 1 -cos 2kx) and using (4.7) we find 

1 + n ( x ) I 2 e ( & F - & n p ) =  L y N - -  Ly lopF dk(  p: - k2)l12 cos 2kx. (4.8) 
nP IT2 

Hence we can write (4.4) as 

( U )  = -- lopF dk(p:- k 2 ) ' / 2  loLx dxf(x) cos 2kx. (4.9) 
5r2 

Replacing the upper limit of the x integral by CO and using the form (3.11) forf(x) 
we find for pFd >> 1 

(IT)=--+o - . 4"; (pfd) 
(4.10) 

Hence we see that in the vicinity of the wall we have an average excess charge/unit 
length of - p F / h  plus vanishingly small corrections. The questions we address next 
is how large are the mean square deviations from this value. 

The mean square deviations in the linear charge are given by 

( ( A v ) ~ ) = ( I T ' ) - ( I T ) ~ .  (4.11) 

t In approximating the sum by an integral we lose an x-independent term of relative order ( p F L x ) - ' .  This 
term corresponds to an increase in the average charge spread over the area which compensates for that 
squeezed out at the hard walls. By virtue of the finite measurement range d, the contribution of the omitted 
term to (a) is down on the leading term by a factor of O ( d / L , )  and hence is neglectable. 
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( c 6 n l  (xl )dnl (x2)dn2(x1)  dn2(X2) e( E F  - &n, p )  e( En2 p - &F) 
~ I V P  

Replacing the sum in equation (4.17) by an integral gives 

=(: )2(4) (L)2  2T L, [:dkl JOmdk2 [-:dp sin(k,x,) sin(k,x2) sin(k2x,) 
n l ” 2 P  

x sin( k2x2) e( p :  - k: - p 2 )  e( k: + p’ - p:)  

x sin( k2x,) sin( k2x2). 

If we insert this in equation (4.17) and carry out the 
we obtain ( d)’ 1 JoP~  {:P:-P2)”2 

dk, Iw dk2 
(P$-P2)1 ’2  

( ( A u ) ~ ) =  - - dP 5r VL, 

1 ( 1 + [( k, - k2)d]’ 1 + [ (k, 

sin( k,x,) sin( klx2) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

x integrations (with L,+oo) 

(4.20) 

The first term in the large brackets dominates the integral. Hence on going to 
dimensionless variables z = p / p F ,  x = kl/pF, y = k2/pF we find 

((AV)’)=- - (4.21) 
1 

[ E’+ (x  - y)’]’ 
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where 

& = ( P F d ) - ' < <  1. (4.22) 

Changing to the variables w = y - x, v = y - (1  - z ~ ) ' ' ~  the integral in equation (4.21) 
becomes, on integrating by parts with respect to U 

(4.23) 

Hence we can write equation (4.21) as 

or combining this result with equation (4.10) for the average linear charge 

8 1 --_- - 
(4' 77 PFL,' 

(4.24) 

(4.25) 

We can interpret this result in two equivalent ways. It is the (fractional deviation)' 

(i) the (excess) linear charge density of a system with boundary length L,, or 
(ii) the (excess) boundary charge of a system with boundary length LY. 
Thus since p;' is a microscopic length we will have vanishingly small deviations 

from the mean value of (say) the linear charge density provided Ly is a macroscopic 
length. The whole stabilisation of the linear charge density results from the huge 
disparity of the two fundamental length scales in the problem. 

The result of equation (4.25) suggests that in one dimension the fractional deviations 
of the charge (not charge density) at the boundary are not small. We cannot directly 
infer what values these have from equation (4.25) by taking L, + 0 since we assumed 
it large at various intermediate stages of the calculation. It is straightforward though 
to repeat the above calculation in one dimension and we find for the charge excess 

of either 

1 
(Q)=--+o - 

4 (Pfd) 
(4.26) 

and the deviations 

1 
= 3 - (0)'. (4.27) 

It is, perhaps, interesting to return to the two-dimensional system and consider 
what charge at the boundary is associated with particles having definite transverse (i.e. 
parallel to the wall) momentum p Y .  By similar methods to those already presented we 
find 

(4.28) 

(4.29) 
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Hence we see that except for momenta within -d-'  of the Fermi momentum we 
have the one-dimensional results of equations (4.26) and (4.27). Thus the two- 
dimensional system may be considered to be a sum of many one-dimensional systems. 

5. Discussion 

In this work we have considered some of the properties of very simple non-relativistic 
fermion systems. We have shown that in two-dimensional systems hard wall boundary 
conditions have the results of producing a linear charge density at the boundary which 
has the property of being essentially fluctuation free?. 

It was, as the reader may well have guessed, the one-dimensional system which 
inspired this work. It is an intriguing possibility that a related system could exhibit 
(essentially fluctuation free) fractional charge effects. Such a system would require 
interactions between the fermions leading to a ground state with correlations beyond 
those produced by Fermi statistics. The mean square charge deviations in this case 
can be written as 

(5.1) 

with 

c (XI  , x2) = ( cc,' ( X I  ) cc, ( X I  ) 4' (x2) cc, (x2)) - ( CL+( XI ) cc, (XI I)( JI+( x2) cc, (xz)). (5.2) 

It would seem to put some stringent conditions on C(x, ,  x2) and (++(xl)t,b(xl)) if 
both a sizable charge and small fractional deviations can be produced. 
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